Ossified ungular cartilages can be of clinical significance," Dyson concluded. "Valuable information about the ossified ungular cartilages, such as a fracture at the base, may be missed without oblique dorsopalmar (a front view), oblique images of a flexed foot, and an 'upright pedal' view of the affected area. She encouraged attendees to use several radiographic views to aid in shock absorption, support of the back of the foot, and venous return. When this structure ossifies, veterinarians know there is an increased risk of injury to the collateral ligament of the coffin joint and other nearby structures. Further, ossified cartilages are less able to dissipate energy from the ground reaction, also predisposing the horse to injury. But veterinarians weren't sure whether ossified ungular cartilage, with palmar extension proximally, can be seen. There is extensive increased opacity in the spongiosa (black arrows) of the ossified ungular cartilage on other side of a radiolucent line (white arrow) which could reflect a junction between separate centres of ossification or a chronic trauma or fracture.

They determined that:

- 32/131 horses (24.4%) that underwent MRI had grade 4 or 5 ossification of an ungular cartilage.
- Of these, 27 of these (64%) had grade 4 or 5 ossification of an ungular cartilage.
- Of these, 42 horses had injury causing lameness directly related to the ungular cartilage.
- MRI, scintigraphy, and lameness were associated with the ungular cartilage grade.
- Affected horses can have a variety of hoof conformations, and lameness is usually mild, even when cartilages fracture. Lameness is generally most visible on a circle, and in some cases horses are only lame when ridden.
- Ossified ungular cartilages are a clinically significant finding in horses. Dyson is the head of clinical research for the Equine Reproduction Services (ERS) in the United States. She presented the results of a study to determine whether ossified ungular cartilages were associated with lameness, other abnormalities, and how often they were found. She explained that ossified ungular cartilages are firm to palpate, but cartilage itself is soft to palpation, while bone is rigid. It's important to note that cartilage and bone are both connective tissue types, but serve different functions. Cartilage is found at joints, while bone is a rigid tissue found in the horse's skeleton. Both cartilage and bone are composed of collagen and proteoglycans, but bone is more calcified and dense than cartilage.

Dyson also briefly reviewed diagnostics. She explained that ossified cartilages are firm to palpate, but cartilage itself is soft to palpation, while bone is rigid. It's important to note that cartilage and bone are both connective tissue types, but serve different functions. Cartilage is found at joints, while bone is a rigid tissue found in the horse's skeleton. Both cartilage and bone are composed of collagen and proteoglycans, but bone is more calcified and dense than cartilage.

But cartilage itself is soft to palpation, while bone is rigid. It's important to note that cartilage and bone are both connective tissue types, but serve different functions. Cartilage is found at joints, while bone is a rigid tissue found in the horse's skeleton. Both cartilage and bone are composed of collagen and proteoglycans, but bone is more calcified and dense than cartilage.